

Technical University of Cluj-Napoca

Software Tools for Cloud Computation in Engineering Applications

Marius Purcar Facultatea de Inginerie Electrica Dep. de Electrotehnica si Masurari

Matlab

UTCN is the first university in Romania to purchase a MATLAB Campus Wide License!

Institutional project "Supporting Excellence in the Research Field of Nanotechnologies and Advanced

Materials" - ExNanoMat

Over 1.000 universities have a MATLAB Campus License Enabling over 3.5 million students

MATLAB & Simulink | Applications & Industries

Mathematical Modeling	Aerospace and Defense
Signals and Communications	Automotive
Control Systems	Communications, Electronics, Semiconductors
Data Analytics	Industrial Automation and Machinery
Computer Vision and Image Processing	Energy and Chemical Production
Physical Modeling	Financial Services
Internet of Things	Biotech and Pharmaceuticals

MATLAB campus-wide license full toolboxes

	1 MATLAB	41 Model Predictive Control Toolbox	81 Simulink Report Generator
	2 Simulink	42 Model-Based Calibration Toolbox	82 Simulink Requirements
	35G Toolbox	43 Motor Control Blockset	83 Simulink Test
	4AUTOSAR Blockset	44 Navigation Toolbox	84 SoC Blockset
	5 Aerospace Blockset	45OPC Toolbox	85 Spreadsheet Link
	6 Aerospace Toolbox	46 Optimization Toolbox	86 Stateflow
			Statistics and Machine Learning
	7Antenna Toolbox	47 Parallel Computing Toolbox	87Toolbox
		Partial Differential Equation	
	8 Audio Toolbox	48Toolbox	88 Symbolic Math Toolbox
	9Automated Driving Toolbox	49 Phased Array System Toolbox	89System Composer
	10 Bioinformatics Toolbox	50 Powertrain Blockset	90 System Identification Toolbox
	11 Communications Toolbox	51 Predictive Maintenance Toolbox	91 Text Analytics Toolbox
	12Computer Vision Toolbox	52RF Blockset	92 Trading Toolbox
	13Control System Toolbox	53RF Toolbox	93 Vehicle Dynamics Blockset
	14Curve Fitting Toolbox	54ROS Toolbox	94 Vehicle Network Toolbox
	15DSP System Toolbox	55 Reinforcement Learning Toolbox	95 Vision HDL Toolbox
	16 Data Acquisition Toolbox	56 Risk Management Toolbox	96 W LAN Toolbox
	17 Database Toolbox	57 Robotics System Toolbox	97Wavelet Toolbox
	18Datafeed Toolbox	58 Robust Control Toolbox	98Wireless HDL Toolbox
		Sensor Fusion and Tracking	
	19 Deep Learning Toolbox	59Toolbox	
	20 Econometrics Toolbox	60 SerDes Toolbox	
	21 Embedded Coder	61 Signal Processing Toolbox	
	22 Filter Design HDL Coder	62SimBiology	
	Financial Instruments	0,	
	23Toolbox	63SimEvents	
	24 Financial Toolbox	64 Simscape Driveline	
	25 Fixed-Point Designer	65 Simscape Electrical	
	26 Fuzzy Logic Toolbox	66 Simscape Fluids	
	27GPU Coder	67 Simscape Multibody	
	Global Optimization		
	28Toolbox	68 Simscape	
	29 HDL Coder	69 Simulink 3D Animation	
	30 HDL Verifier	70 Simulink Check	
	31 Image Acquisition Toolbox	71 Simulink Code Inspector	
	32 Image Processing Toolbox	72 Simulink Coder	
	33 Instrument Control Toolbox	73 Simulink Compiler	
	34LTE Toolbox	74 Simulink Control Design	
	35 MATLAB Coder	75 Simulink Coverage	
	36 MATLAB Compiler SDK	76 Simulink Design Optimization	
_	37MATLAB Compiler	77 Simulink Design Verifier	
	38MATLAB Report Generator	78 Simulink Desktop Real-Time	
	39 Mapping Toolbox	79 Simulink PLC Coder	
	40 Mixed-Signal Blockset	80 Simulink Real-Time	

3786 activations from 20.06.2019 until now

- 3502 students
- 284 cadre didactice si cercetători
- 7 laboratoare

- In MATLAB Parallel Server[™] lets you scale MATLAB[®] programs and Simulink[®] simulations to clusters and clouds.
- You can prototype your programs and simulations on the desktop and then run them on clusters and clouds without recoding. MATLAB Parallel Server supports batch jobs, interactive parallel computations, and distributed computations with large matrices.

1. Big data processing for yield estimation

- At different verification phases of an integrated circuit (IC), a high volume of measurements is usually done and saved in large, tabular formats (e.g. csv files);
- These measurements are repeated on every chip, on every wafer (one wafer contains thousands/tens of thousands of chips) and every lot (one lot contains several wafers) for each combination of operating conditions;
- The resulted files for a single (IC) can reach orders of GB of data;
- For the statistical analysis performed by our group (e.g. yield assessment, correlation analysis, etc), these large data files need to be processed and transformed into a unified and MATLAB-compatible format;
- Using the could service, we could benefit of a much lower processing time for the data files.

Statistics and machine learning toolbox

Infineon

Dev40

Dev40

2. High-volume data generation for yield estimation

- The method of accurate yield estimation, includes a step of high-volume data generation based on the statistical correlation information of input data for estimation accuracy improvement
- Thus, the initial data set of *v*-dimensions and *n*-samples (*n* usually in the range of hundreds, marked in red), is transformed into a data set with the same dimensions but millions of samples (marked in green)
- Using the could service, we could benefit of a lower generation time of the high-volume data and also store this data for subsequent statistical analysis

Matlab for Cloud Applications

3. Fitting of neural networks

Infineon

Dev40

- For the purpose of accurate yield estimation towards yield prediction, machine learning-based regression models are used for modeling the dependence of performance and technology parameters;
- The fitting of such dependencies is a time-consuming process (hours/days). We use neural networks in our methods, but others, such as SVMs (support vector machines) come with the same disadvantage;
- Moreover, these regression models usually come with a set of hyperparameters to be tuned, which adds to the global computational cost and time;
- Using the could service, we could benefit of a lower fitting and modeling time, enabling a faster yield prediction.

Ansys Multiphysics Academic Research 2020R2 - 100 licenses

- Fluent, CFX, ICEM, Electronics Desktop, SIWAVE, Emit, Savant, RedHawketc etc.
- HPC 128 processors

/\nsys	PRODUCTS	SOLUTIONS	SERVICES	SUPPORT	ABOUT ANSYS	FREE TRIALS	ଚ ି ପ
		Products f	rom A - Z				
Our innovative products a	are built to meet a	ll your essential l	pusiness needs	s and evolve	as your business r	needs grow.	
A B C D E F	G H I J	K L M	N O P	Q R S	T U V W	X Y Z	
Fluids	Structure	S	Ele	ctronics	:	Semiconductors	
		ŀ))			
Embedded Software	Multiphysi	ics	PI	atform		Systems	

Research project "Integrated Development 4.0" – iDev40, H2020-ECSEL-2017-1-IA-two-stage

Ansys Multiphysics

3D DESIGN

Rapidly explore ideas, iterate and innovate with Ansys Discovery 3D design software. With the easy-to-use tools, you can build and optimize lighter and smarter products.

ELECTRONICS

Ansys software can uniquely simulate

electromagnetic performance across

component, circuit and system design,

and can evaluate temperature, vibration

and other critical mechanical effects.

EMBEDDED SOFTWARE

Ansys provides a model-based embedded software development and simulation environment with a built-in automatic code generator to accelerate embedded software development projects.

Ansys CFD goes beyond qualitative results to deliver accurate quantitative predictions of fluid interactions and trade-offs.

Ansys Multiphysics

SEMICONDUCTORS

Ansys empowers customers with multiphysics simulations to simultaneously solve power, thermal, variability, timing, electromagnetics and reliability challenges across the spectrum of chip, package and system to promote first-time silicon and system success. \$

STRUCTURES

With the finite element analysis (FEA) solvers available in the suite, you can customize and automate solutions for your structural mechanics problems and parameterize them to analyze multiple design scenarios.

SYSTEMS

As product complexity grows, so does the challenge of integrating individual components within a system to ensure they work together as expected.

LEARN MORE

LEARN MORE

LEARN MORE

Ansys Multiphysics for Cloud Applications

8.0

7.0

6.0

5.0 dD

3.0

2.0

1.0

0.0

2016

Speed 4.0

864

1152 Number of Cores

1440

1728

- Any relatively detailed structural mechanics model e.g., mesh size in excess of ~500K DOF is going to take a very long time to solve <u>ک</u> on a single CPU core.
- Ansys HPC reduces the time to solution significantly. Ô

288

576

For larger models (in excess of ~10 MDOF) parallel processing with Ansys HPC is needed to make the simulation feasible; a single CPU ÷ core typically cannot access enough computer memory to handle these models.

https://www.ansys.com/

Software Tools

Ansys Multiphysics for Cloud Applications

GPU Accelerator Capabilities * Release 19.1

* Used in support of the CPU to process certain calculations and key solver computations for faster performance during a solution.

- Acceleration can be used for both shared-memory parellel processing (shared-memory ANSYS) and distributed-memory parallel processing (Distributed ANSYS).
- Acceleration is available for both Windows and Linux.

Support by Application

ANSYS Mechanical APDL supports NVIDIA's CUDA-enabled Tesla and Quadro series workstation and server cards. When using the sparse solver or eigensolvers based on the sparse solver with NVIDIA cards additional considerations apply (please consult the ANSYS installation guide for details).

ANSYS Fluent supports NVIDIA's CUDA-enabled Tesla and Quadro series workstation and server cards.

ANSYS Polyflow supports NVIDIA's CUDA-enabled Tesla and Quadro series workstation and server cards.

ANSYS EMIT supports NVIDIA Tesla and Quadro V series, P series, M series and K series cards, GeForce GTX Series and GeForce GT Series.

ANSYS HFSS supports NVIDIA Tesla V and P series, C20-series, Tesla K series, Quadro V, P and K series (K5000 and above).

ANSYS ICEPAK supports NVIDIA's CUDA-enabled Tesla and Quadro series workstation and server cards.

ANSYS Maxwell supports NVIDIA Tesla V and P series, C20-series, Tesla K series, Quadro V, P and K series (K5000 and above).

ANSYS Savant supports NVIDIA Tesla and Quadro V series, P series, M series and K series cards, GeForce GTX Series and GeForce GT Series.

Application	Manufacturer	Product Series	Card / GPU	Tested Platform	Tested Operating System Version
	NVIDIA	Tesla	к80	Linux x64	Red Hat 6.8
ANSYS			M2075	Linux x64	Red Hat 7.3
APDL			P100	Linux x64	CentOS 7.4
			V100	Windows x64	Windows Server 2016
	NVIDIA	Quadro	GP100	Linux x64	Red Hat 7.2
			K5000	Windows x64	Windows 7
		Tesla	C2075	Windows x64	Windows 7
			K40m	Windows x64	Windows 10
ANSYS Fluent			К80	Linux x64	Red Hat 7.2
				Linux x64	SLES 12 SP1
			M2075	Windows x64	Windows 7
			P100	Linux x64	SLES 11 SP3
			V100	Linux x64	SLES 11 SP3

https://www.ansys.com/

Ansys Multiphysics for Cloud Applications

How does Fluent work?

- The mesh is generated using parallel processing each color depicts the parts of the mesh created by one process.
- All the Fluent processes work together to fill the live fluid/solid space.

https://www.ansys.com/

Ansys Multiphysics for Cloud Applications

How does Fluent work?

- The mesh is partitioned using a bisection or METIS algorithm
- Each partition is further clustered by the solver

https://www.ansys.com/

Ansys Multiphysics for Cloud Applications

© Computational model, transient thermomechanical on Ansvs Cloud

- Mesh: elements: 3.52e+6, nodes: 1.78e+6
- Distributed simulation Ansys Cloud, 12 processors, unlimited memory– between 9 to 10h (10 thermal cycles)
- One processor workstation with 64Gb RAM: between 80 and 90h.

Ô

Code_Aster Open Source

Code_Aster Open Source

Elasto-plastic computation (static and non-linear)

Sedimentary basin calculation (linear dynamic)

Dof	Procs	Solving time (s)
25 842 015	270	1.5
185 911 227	1 080	4.8

https://www.code-aster.org/

Code_Aster Open Source

Thank you

